Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 18(9): e1010358, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36084134

RESUMO

Stu2 in S. cerevisiae is a member of the XMAP215/Dis1/CKAP5/ch-TOG family of MAPs and has multiple functions in controlling microtubules, including microtubule polymerization, microtubule depolymerization, linking chromosomes to the kinetochore, and assembly of γ-TuSCs at the SPB. Whereas phosphorylation has been shown to be critical for Stu2 localization at the kinetochore, other regulatory mechanisms that control Stu2 function are still poorly understood. Here, we show that a novel form of Stu2 regulation occurs through the acetylation of three lysine residues at K252, K469, and K870, which are located in three distinct domains of Stu2. Alteration of acetylation through acetyl-mimetic and acetyl-blocking mutations did not impact the essential function of Stu2. Instead, these mutations lead to a decrease in chromosome stability, as well as changes in resistance to the microtubule depolymerization drug, benomyl. In agreement with our in silico modeling, several acetylation-mimetic mutants displayed increased interactions with γ-tubulin. Taken together, these data suggest that Stu2 acetylation can govern multiple Stu2 functions, including chromosome stability and interactions at the SPB.


Assuntos
Proteínas Associadas aos Microtúbulos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Acetilação , Benomilo/análise , Benomilo/metabolismo , Instabilidade Cromossômica , Humanos , Lisina/genética , Lisina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Perilipina-4/genética , Perilipina-4/metabolismo , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
2.
Plant Signal Behav ; 15(11): 1807723, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32799639

RESUMO

Plant potexvirus and potyvirus infection can trigger endoplasmic reticulum (ER) stress. ER stress signaling increases the expression of cytoprotective ER-chaperones, especially the BiP chaperones which contribute to pro-survival functions when plants are subjected to infection. The inositol requiring enzyme (IRE1) is one ER stress sensor that is activated to splice the bZIP60 mRNA which produces a truncated transcription factor that activates gene expression in the nucleus. The IRE1/bZIP60 pathway is associated with restricting potyvirus and potexvirus infection. Recent data also identified the IRE1-independent UPR pathways led by bZIP28 and bZIP17 contribute to potexvirus and potyvirus infection. These three bZIP pathways recognize cis-regulatory elements in the BiP promoters to enhance gene expression. BiP is part of a negative feedback loop that regulates the activities of the ER stress transducers IRE1, bZIP28, and bZIP17 to block their activation. We discuss a model in which bZIP60 and bZIP17 synergistically induce BiP and other genes restricting Plantago asiatica mosaic virus (PlAMV; a potexvirus) infection while bZIP60 and bZIP28 independently induce genes supporting PlAMV infection. Regarding Turnip mosiac virus (TuMV, a potyvirus) infection, bZIP60 and bZIP28 serve to repress local and systemic infection. Finally, tauroursodeoxycholic acid treatments were used to demonstrate that the protein folding capacity significantly influences PlAMV accumulation.


Assuntos
Potexvirus/patogenicidade , Potyvirus/patogenicidade , Resposta a Proteínas não Dobradas/fisiologia , Arabidopsis/metabolismo , Arabidopsis/virologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/fisiologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Resposta a Proteínas não Dobradas/genética
3.
Cytoskeleton (Hoboken) ; 75(7): 290-306, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29729126

RESUMO

Stu2p is the yeast member of the XMAP215/Dis1/ch-TOG family of microtubule-associated proteins that promote microtubule polymerization. However, the factors that regulate its activity are not clearly understood. Here we report that Stu2p in the budding yeast Saccharomyces cerevisiae interacts with SUMO by covalent and noncovalent mechanisms. Stu2p interacted by two-hybrid analysis with the yeast SUMO Smt3p, its E2 Ubc9p, and the E3 Nfi1p. A region of Stu2p containing the dimerization domain was both necessary and sufficient for interaction with SUMO and Ubc9p. Stu2p was found to be sumoylated both in vitro and in vivo. Stu2p copurified with SUMO in a pull-down assay and vice versa. Stu2p also bound to a nonconjugatable form of SUMO, suggesting that Stu2p can interact noncovalently with SUMO. In addition, Stu2p interacted with the STUbL enzyme Ris1p. Stu2p also copurified with ubiquitin in a pull-down assay, suggesting that it can be modified by both SUMO and ubiquitin. Tubulin, a major binding partner of Stu2p, also interacted noncovalently with SUMO. By two-hybrid analysis, the beta-tubulin Tub2p interacted with SUMO independently of the microtubule stressor, benomyl. Together, these findings raise the possibility that the microtubule polymerization activities mediated by Stu2p are regulated through sumoylation pathways.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/metabolismo , Saccharomyces cerevisiae/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases
4.
Cytoskeleton (Hoboken) ; 72(7): 305-39, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26033929

RESUMO

Sumoylation is a powerful regulatory system that controls many of the critical processes in the cell, including DNA repair, transcriptional regulation, nuclear transport, and DNA replication. Recently, new functions for SUMO have begun to emerge. SUMO is covalently attached to components of each of the four major cytoskeletal networks, including microtubule-associated proteins, septins, and intermediate filaments, in addition to nuclear actin and actin-regulatory proteins. However, knowledge of the mechanisms by which this signal transduction system controls the cytoskeleton is still in its infancy. One story that is beginning to unfold is that SUMO may regulate the microtubule motor protein dynein by modification of its adaptor Lis1. In other instances, cytoskeletal elements can both bind to SUMO non-covalently and also be conjugated by it. The molecular mechanisms for many of these new functions are not yet clear, but are under active investigation. One emerging model links the function of MAP sumoylation to protein degradation through SUMO-targeted ubiquitin ligases, also known as STUbL enzymes. Other possible functions for cytoskeletal sumoylation are also discussed.


Assuntos
Actinas/metabolismo , Filamentos Intermediários/metabolismo , Microtúbulos/metabolismo , Septinas/metabolismo , Sumoilação/fisiologia , Animais , Humanos , Transdução de Sinais/fisiologia
5.
Mol Biol Cell ; 23(23): 4552-66, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23034179

RESUMO

Microtubules and microtubule-associated proteins are fundamental for multiple cellular processes, including mitosis and intracellular motility, but the factors that control microtubule-associated proteins (MAPs) are poorly understood. Here we show that two MAPs-the CLIP-170 homologue Bik1p and the Lis1 homologue Pac1p-interact with several proteins in the sumoylation pathway. Bik1p and Pac1p interact with Smt3p, the yeast SUMO; Ubc9p, an E2; and Nfi1p, an E3. Bik1p interacts directly with SUMO in vitro, and overexpression of Smt3p and Bik1p results in its in vivo sumoylation. Modified Pac1p is observed when the SUMO protease Ulp1p is inactivated. Both ubiquitin and Smt3p copurify with Pac1p. In contrast to ubiquitination, sumoylation does not directly tag the substrate for degradation. However, SUMO-targeted ubiquitin ligases (STUbLs) can recognize a sumoylated substrate and promote its degradation via ubiquitination and the proteasome. Both Pac1p and Bik1p interact with the STUbL Nis1p-Ris1p and the protease Wss1p. Strains deleted for RIS1 or WSS1 accumulate Pac1p conjugates. This suggests a novel model in which the abundance of these MAPs may be regulated via STUbLs. Pac1p modification is also altered by Kar9p and the dynein regulator She1p. This work has implications for the regulation of dynein's interaction with various cargoes, including its off-loading to the cortex.


Assuntos
Endorribonucleases , Proteínas Associadas aos Microtúbulos , Mitose , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sumoilação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Methods Mol Biol ; 782: 231-44, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21870296

RESUMO

In yeast like all eukaryotes, microtubules are a crucial element of the mitotic spindle that separates the genetic material during cell division. The assembly status and position of the mitotic spindle, as well as cytoplasmic microtubules, can be monitored easily using indirect immunofluorescence with antibodies against tubulin. A detailed protocol is described for Saccharomyces cerevisiae that involves the fixation of actively growing cells, removal of the cell wall by enzymatic digestion, post-fixation, and the application of tubulin antibodies. The use of secondary antibodies conjugated to a fluorescent moiety permit visualization of the mitotic spindle by fluorescence microscopy. Methods for the reduction of background and pre-absorption of antibodies are discussed.


Assuntos
Técnica Indireta de Fluorescência para Anticorpo/métodos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Microscopia de Fluorescência , Tubulina (Proteína)/metabolismo
7.
Genetics ; 180(4): 2033-55, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18832349

RESUMO

Accurate positioning of the mitotic spindle is important for the genetic material to be distributed evenly in dividing cells, but little is known about the mechanisms that regulate this process. Here we report that two microtubule-associated proteins important for spindle positioning interact with several proteins in the sumoylation pathway. By two-hybrid analysis, Kar9p and Bim1p interact with the yeast SUMO Smt3p, the E2 enzyme Ubc9p, an E3 Nfi1p, as well as Wss1p, a weak suppressor of a temperature-sensitive smt3 allele. The physical interaction between Kar9p and Ubc9p was confirmed by in vitro binding assays. A single-amino-acid substitution in Kar9p, L304P disrupted its two-hybrid interaction with proteins in the sumoylation pathway, but retained its interactions with the spindle positioning proteins Bim1p, Stu2p, Bik1p, and Myo2p. The kar9-L304P mutant showed defects in positioning the mitotic spindle, with the spindle located more distally than normal. Whereas wild-type Kar9p-3GFP normally localizes to only the bud-directed spindle pole body (SPB), Kar9p-L304P-3GFP was mislocalized to both SPBs. Using a reconstitution assay, Kar9p was sumoylated in vitro. We propose a model in which sumoylation regulates spindle positioning by restricting Kar9p to one SPB. These findings raise the possibility that sumoylation could regulate other microtubule-dependent processes.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fuso Acromático/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Microscopia de Fluorescência , Proteínas dos Microtúbulos/genética , Proteínas dos Microtúbulos/metabolismo , Mutação , Proteínas Nucleares/genética , Fosforilação , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
8.
Mol Biol Cell ; 18(4): 1187-202, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17251549

RESUMO

During mitosis in the yeast Saccharomyces cerevisiae, Kar9p directs one spindle pole body (SPB) toward the incipient daughter cell by linking the associated set of cytoplasmic microtubules (cMTs) to the polarized actin network on the bud cortex. The asymmetric localization of Kar9p to one SPB and attached cMTs is dependent on its interactions with microtubule-associated proteins and is regulated by the yeast Cdk1 Cdc28p. Two phosphorylation sites in Kar9p were previously identified. Here, we propose that the two sites are likely to govern Kar9p function through separate mechanisms, each involving a distinct cyclin. In the first mechanism, phosphorylation at serine 496 recruits Kar9p to one SPB. A phosphomimetic mutation at serine 496 bypasses the requirement of BIK1 and CLB5 in generating Kar9p asymmetry. In the second mechanism, Clb4p may target serine 197 of Kar9p for phosphorylation. This modification is required for Kar9p to direct cMTs to the bud. Two-hybrid analysis suggests that this phosphorylation may attenuate the interaction between Kar9p and the XMAP215-homologue Stu2p. We propose that phosphorylation at serine 197 regulates the release of Kar9p from Stu2p at the SPB, either to clear it from the mother-SPB or to allow it to travel to the plus end.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina B , Ciclinas/genética , Ciclinas/metabolismo , Dineínas/genética , Dineínas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas dos Microtúbulos/genética , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mutação , Proteínas Nucleares/genética , Fosforilação , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Serina , Fuso Acromático/fisiologia
9.
Curr Top Dev Biol ; 76: 49-87, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17118263

RESUMO

Bik1p is the yeast Saccharomyces cerevisiae representative of the CLIP-170 family of microtubule plus-end tracking proteins. Bik1p shares a number of similarities with its mammalian counterpart CLIP-170, including an important role in dynein function. However, Bik1p and CLIP-170 differ in several significant ways, including the mechanisms utilized to track microtubule plus ends. In addition to presenting functional comparisons between Bik1p and CLIP-170, we provide sequence analyses that reveal previously unrecognized similarities between Bik1p and its animal counterparts. We examine in detail what is known about the functions of Bik1p and consider the various roles that Bik1p plays in positioning the yeast mitotic spindle. This chapter also highlights several recent findings, including the contribution of Bik1p to the yeast mating pathway.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Sequência de Aminoácidos , Animais , Dineínas/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas Nucleares/metabolismo , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
10.
Mol Biol Cell ; 17(1): 178-91, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16236795

RESUMO

Accurate positioning of the mitotic spindle in Saccharomyces cerevisiae is coordinated with the asymmetry of the two poles and requires the microtubule-to-actin linker Kar9p. The asymmetric localization of Kar9p to one spindle pole body (SPB) and microtubule (MT) plus ends requires Cdc28p. Here, we show that the CLIP-170 homologue Bik1p binds directly to Kar9p. In the absence of Bik1p, Kar9p localization is not restricted to the daughter-bound SPB, but it is instead found on both SPBs. Kar9p is hypophosphorylated in bik1delta mutants, and Bik1p binds to both phosphorylated and unphosphorylated isoforms of Kar9p. Furthermore, the two-hybrid interaction between full-length KAR9 and the cyclin CLB5 requires BIK1. The binding site of Clb5p on Kar9p maps to a short region within the basic domain of Kar9p that contains a conserved phosphorylation site, serine 496. Consistent with this, Kar9p is found on both SPBs in clb5delta mutants at a frequency comparable with that seen in kar9-S496A strains. Together, these data suggest that Bik1p promotes the phosphorylation of Kar9p on serine 496, which affects its asymmetric localization to one SPB and associated cytoplasmic MTs. These findings provide further insight into a mechanism for directing centrosomal inheritance.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias/química , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proliferação de Células , Ciclina B/genética , Ciclina B/metabolismo , Deleção de Genes , Proteínas Associadas aos Microtúbulos/classificação , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Mutação/genética , Proteínas de Neoplasias/classificação , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...